Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Jun-Hong Zhang, Da-Qi Wang* and Jian-Min Dou

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059,
People's Republic of China

Correspondence e-mail: wdq4869@163.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.047$
$w R$ factor $=0.057$
Data-to-parameter ratio $=15.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[2,5,8,11,14-pentaoxabicyclo[13.4.0]-nonadeca-1(15),16,18-triene]potassium(I) bis(2-thioxo-4,5-dihydro-1,3-dithiole-4,5dithiolato)nickel(III)

The title compound, $\left[\mathrm{K}\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5}\right)_{2}\right]\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}\right]$ or $[\mathrm{K}$ (benzo15 -crown-5 $\left.)_{2}\right]\left[\mathrm{Ni}(\text { dmit })_{2}\right]$, consists of K^{I} complex cations with benzo-15-crown-5 ligands and $\mathrm{Ni}^{\text {III }}$ complex anions with 4,5-dimercapto-1,3-dithiole-2-thione (dmit) ligands. The $\mathrm{Ni}^{\text {III }}$ atom is coordinated by four S atoms from two dmit ligands in a distorted square-planar geometry, while the K^{+}cation is coordinated by ten O atoms from two crown ether ligands.

Comment

As part of an investigation of organic-inorganic hybrid crystalline solids containing crown-ether-coordinated cations as building blocks (Dou et al., 2004; Dong et al., 2005), we prepared the title compound, (I), and present its crystal structure here.

The crystal structure of (I) consists of K^{+}-crown complex cations and $\mathrm{Ni}^{\text {III }}$ complex anions. The molecular structure is shown in Fig. 1. Within the complex cation, K^{+}is coordinated by ten O atoms from two benzo- 15 -crown- 5 molecules. The $\mathrm{K}-\mathrm{O}$ distances range from 2.788 (4) to 3.014 (3) \AA. This is consistent with the values found in [K(18-crown-6)][$\mathrm{Ni}\left(\mathrm{dmit}_{2}\right.$] (Wang et al., 2002).

The charge balance suggests that the Ni atom occurs as $\mathrm{Ni}^{\text {III }}$ and not $\mathrm{Ni}^{\mathrm{II}}$ in the complex anion, which agrees with the situations in $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$ (Lindqvist et al., 1982) and $\left[\mathrm{K}(18-\right.$ crown-6) $]\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$ (Wang et al., 2002). Within the complex anion, the $\mathrm{Ni}^{\mathrm{III}}$ atom is coordinated by four S atoms from two dmit ligands with a tetrahedrally distorted squareplanar geometry, the dihedral angle between two dmit mean

Received 14 July 2005 Accepted 28 July 2005 Online 6 August 2005
planes being $15.18(7)^{\circ}$. The $\mathrm{Ni}-\mathrm{S}$ bond distances (Table 1) are consistent with those found in $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$ (Lindqvist et al., 1982).

The packing is shown in Fig. 2. The $\mathrm{S} 2 \cdots \mathrm{~S} 10\left(\frac{3}{2}-x, y+\frac{1}{2}\right.$, $\left.\frac{1}{2}-z\right)$ separation of 3.444 (2) \AA and the $\mathrm{S} 4 \cdots \mathrm{~S}\left(\frac{3}{2}-x, y+\frac{1}{2}\right.$, $\frac{1}{2}-z$) separation of 3.573 (2) \AA are the shortest contacts between complex anions.

Experimental

A 1,2-dichloroethane (10 ml) solution of benzo-15-crown-5 (1 mmol) was mixed with an aqueous solution $(5 \mathrm{ml})$ of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$ and an ethanol solution (5 ml) of K_{2} dmit (0.5 mmol). The mixture was stirred for 2 h at room temperature and then filtered. The precipitate was separated and dissolved in a mixture of ethanol and diethyl ether (1:1 ($\mathrm{v} / \mathrm{v})$. Colourless single crystals of (I) were obtained by slow evaporation of the solution (m.p. 523 K). Analysis calculated for $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{KNiO}_{10} \mathrm{~S}_{10}$: C 39.76, H 3.93, S 31.22%; found: C 39.71, H 3.96, S 31.19\%.

Crystal data

$\left[\mathrm{K}\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5}\right)_{2}\right]\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}\right]$
$M_{r}=1027.07$
Monoclinic, $P 2_{1} / n$
$a=18.270$ (6) А
$b=11.800$ (4) \AA
$c=21.927$ (8) \AA
$\beta=110.648(8)^{\circ}$
$V=4424(3) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.715, T_{\text {max }}=0.849$
22348 measured reflections

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.057$
$S=0.85$
7813 reflections
505 parameters

Table 1
Selected bond lengths (\AA).

Ni1-S4	$2.1518(14)$	K1-O4	$2.892(3)$
Ni1-S5	$2.1586(15)$	K1-O5	$2.835(4)$
Ni1-S9	$2.1594(15)$	K1-O6	$2.931(3)$
Ni1-S10	$2.1484(14)$	K1-O7	$2.965(4)$
K1-O1	$2.790(3)$	K1-O8	$2.905(4)$
K1-O2	$2.807(3)$	K1-O9	$2.788(4)$
K1-O3	$3.014(3)$	K1-O10	$2.822(3)$

All H atoms were positioned geometrically and treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic) or $0.97 \AA$ (methylene). The $U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine

$$
D_{x}=1.542 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 2431 reflections
$\theta=2.5-20.1^{\circ}$
$\mu=1.06 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.34 \times 0.23 \times 0.16 \mathrm{~mm}$

7813 independent reflections
3106 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.074$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-21 \rightarrow 21$
$k=-14 \rightarrow 13$
$l=-26 \rightarrow 16$

> H-atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)\right]$
> where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.39 \mathrm{e}^{2} \AA^{-3}$
> $\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}$

Figure 1
The structure of (I), shown with 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

A packing diagram for (I), showing the $\mathrm{S} \cdots \mathrm{S}$ short contacts (dashed lines). H atoms have been omitted for clarity.
structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors acknowledge the financial support of the Liaocheng University Science Foundation.

References

Dong, F.-Y., Dou, J.-M., Li, D.-C., Gao, X.-K. \& Wang, D.-Q. (2005). J. Mol. Struct. 738, 79-84.
Dou, J.-M., Gao, X.-K., Dong, F.-Y., Li, D.-C. \& Wang, D.-Q. (2004). Dalton Trans. pp. 2918-2922.
Lindqvist, Q., Andersen, L., Sieler, J., Steimecke, G. \& Hoyer, E. (1982). Acta Chem. Scand. Ser. A, 36, 855-857.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXTL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wang, D.-Q., Dou, J.-M., Niu, M.-J., Li, D.-C. \& Li, Y. (2002). Acta Chim. Sin. 60, 2145-2152.

